Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.416
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(14): e2304897121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38547061

RESUMO

While the existence and functional role of class C G-protein-coupled receptors (GPCR) dimers is well established, there is still a lack of consensus regarding class A and B GPCR multimerization. This lack of consensus is largely due to the inherent challenges of demonstrating the presence of multimeric receptor complexes in a physiologically relevant cellular context. The C-X-C motif chemokine receptor 4 (CXCR4) is a class A GPCR that is a promising target of anticancer therapy. Here, we investigated the potential of CXCR4 to form multimeric complexes with other GPCRs and characterized the relative size of the complexes in a live-cell environment. Using a bimolecular fluorescence complementation (BiFC) assay, we identified the ß2 adrenergic receptor (ß2AR) as an interaction partner. To investigate the molecular scale details of CXCR4-ß2AR interactions, we used a time-resolved fluorescence spectroscopy method called pulsed-interleaved excitation fluorescence cross-correlation spectroscopy (PIE-FCCS). PIE-FCCS can resolve membrane protein density, diffusion, and multimerization state in live cells at physiological expression levels. We probed CXCR4 and ß2AR homo- and heteromultimerization in model cell lines and found that CXCR4 assembles into multimeric complexes larger than dimers in MDA-MB-231 human breast cancer cells and in HCC4006 human lung cancer cells. We also found that ß2AR associates with CXCR4 multimers in MDA-MB-231 and HCC4006 cells to a higher degree than in COS-7 and CHO cells and in a ligand-dependent manner. These results suggest that CXCR4-ß2AR heteromers are present in human cancer cells and that GPCR multimerization is significantly affected by the plasma membrane environment.


Assuntos
Neoplasias , Receptores Adrenérgicos beta 2 , Receptores CXCR4 , Transdução de Sinais , Animais , Cricetinae , Humanos , Células CHO , Cricetulus , Proteínas de Membrana/metabolismo , Neoplasias/metabolismo , Receptores CXCR4/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Multimerização Proteica
2.
J Chem Inf Model ; 64(6): 2045-2057, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38447156

RESUMO

Free-energy profiles for the activation/deactivation of the ß2-adrenergic receptor (ADRB2) with neutral antagonist and inverse agonist ligands have been determined with well-tempered multiple-walker (MW) metadynamics simulations. The inverse agonists carazolol and ICI118551 clearly favor single inactive conformational minima in both the binary and ternary ligand-receptor-G-protein complexes, in accord with the inverse-agonist activity of the ligands. The behavior of neutral antagonists is more complex, as they seem also to affect the recruitment of the G-protein. The results are analyzed in terms of the conformational states of the well-known microswitches that have been proposed as indicators of receptor activity.


Assuntos
Agonismo Inverso de Drogas , Receptores Adrenérgicos beta 2 , Receptores Adrenérgicos beta 2/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Ligantes
3.
Arch Oral Biol ; 162: 105939, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38490087

RESUMO

BACKGROUND: Psychological stressors have been related to tumor progression through the activation of beta-adrenergic receptors (ß-AR) in several types of cancer. PURPOSE: This study aimed to investigate the expressions of ß1- and ß2-AR and their association with psychological and clinicopathological variables in patients with oral squamous cell carcinoma. METHODS: Tumor samples from 99 patients diagnosed with OSCC were subjected to immunohistochemical reaction to detect the expression of ß1-AR and ß2-AR. Anxiety and depression symptoms were assessed using the Beck Anxiety Inventory and Beck Depression Inventory (BDI), respectively. The Brunel Mood Scale was used for measuring affective mood states. RESULTS: Univariate analyzes revealed that higher expression of ß1-AR was associated with increased alcohol consumption (p = 0.032), higher education (p = 0.042), worse sleep quality (p = 0.044) and increased levels of pain related to the primary tumor (p < 0.001). Higher expression of ß2-AR was related with regional metastasis (p = 0.014), increased levels of pain related to the primary tumor (p = 0.044), anxiety (p < 0.001) and depressive (p = 0.010) symptoms and higher mood scores of angry (p = 0.010) and fatigue (p = 0.010). Multivariate analysis identified that patients with advanced clinical stage had lower ß1-AR expression (OR=0.145, 95% CI=0.025-0.828, p = 0.003). Higher anxiety symptoms and higher mood fatigue are independent factors for increased ß2-AR expression (OR=4256, 95% CI=1439-12606, p = 0.009; OR=3816, 95% CI=1258-11,573, p = 0.018, respectively). CONCLUSION: This study reveal that anxiety, fatigue symptoms, and clinical staging are associated with tumor expression of beta-adrenergic receptors in patients with oral cancer.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Receptores Adrenérgicos beta 2/metabolismo , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço , Neoplasias Bucais/patologia , Receptores Adrenérgicos beta , Fadiga , Dor
4.
Pflugers Arch ; 476(3): 407-421, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38253680

RESUMO

25-Hydroxycholesterol (25HC) is a biologically active oxysterol, whose production greatly increases during inflammation by macrophages and dendritic cells. The inflammatory reactions are frequently accompanied by changes in heart regulation, such as blunting of the cardiac ß-adrenergic receptor (AR) signaling. Here, the mechanism of 25HC-dependent modulation of responses to ß-AR activation was studied in the atria of mice. 25HC at the submicromolar levels decreased the ß-AR-mediated positive inotropic effect and enhancement of the Ca2+ transient amplitude, without changing NO production. Positive inotropic responses to ß1-AR (but not ß2-AR) activation were markedly attenuated by 25HC. The depressant action of 25HC on the ß1-AR-mediated responses was prevented by selective ß3-AR antagonists as well as inhibitors of Gi protein, Gßγ, G protein-coupled receptor kinase 2/3, or ß-arrestin. Simultaneously, blockers of protein kinase D and C as well as a phosphodiesterase inhibitor did not preclude the negative action of 25HC on the inotropic response to ß-AR activation. Thus, 25HC can suppress the ß1-AR-dependent effects via engaging ß3-AR, Gi protein, Gßγ, G protein-coupled receptor kinase, and ß-arrestin. This 25HC-dependent mechanism can contribute to the inflammatory-related alterations in the atrial ß-adrenergic signaling.


Assuntos
Adrenérgicos , Átrios do Coração , Hidroxicolesteróis , Camundongos , Animais , Adrenérgicos/metabolismo , Átrios do Coração/metabolismo , Receptores Adrenérgicos beta , Receptores Adrenérgicos beta 2/metabolismo , beta-Arrestinas/metabolismo , Agonistas Adrenérgicos beta/farmacologia
5.
Nat Chem Biol ; 20(1): 74-82, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37580554

RESUMO

G-protein-coupled receptors (GPCRs) are a class of integral membrane proteins that detect environmental cues and trigger cellular responses. Deciphering the functional states of GPCRs induced by various ligands has been one of the primary goals in the field. Here we developed an effective universal method for GPCR cryo-electron microscopy structure determination without the need to prepare GPCR-signaling protein complexes. Using this method, we successfully solved the structures of the ß2-adrenergic receptor (ß2AR) bound to antagonistic and agonistic ligands and the adhesion GPCR ADGRL3 in the apo state. For ß2AR, an intermediate state stabilized by the partial agonist was captured. For ADGRL3, the structure revealed that inactive ADGRL3 adopts a compact fold and that large unusual conformational changes on both the extracellular and intracellular sides are required for activation of adhesion GPCRs. We anticipate that this method will open a new avenue for understanding GPCR structure‒function relationships and drug development.


Assuntos
Receptores Adrenérgicos beta 2 , Receptores Acoplados a Proteínas G , Modelos Moleculares , Microscopia Crioeletrônica , Receptores Acoplados a Proteínas G/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Ligantes
6.
Bioorg Med Chem Lett ; 97: 129562, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37967654

RESUMO

ß2-Adrenergic receptor (ß2AR) agonists have been reported to stimulate glucose uptake (GU) by skeletal muscle cells and are therefore highly interesting as a possible treatment for type 2 diabetes (T2D). The chirality of compounds often has a great impact on the activity of ß2AR agonists, although this has thus far not been investigated for GU. Here we report the GU for a selection of synthesized acyclic and cyclic ß-hydroxy-3-fluorophenethylamines. For the N-butyl and the N-(2-pentyl) compounds, the (R) and (R,R) (3d and 7e) stereoisomers induced the highest GU. When the compounds contained a saturated nitrogen containing 4- to 7-membered heterocycle, the (R,R,R) enantiomer of the azetidine (8a) and the pyrrolidine (9a) had the highest activity. Altogether, these results provide pivotal information for designing novel ß2AR agonist for the treatment of T2D.


Assuntos
Agonistas de Receptores Adrenérgicos beta 2 , Diabetes Mellitus Tipo 2 , Humanos , Agonistas Adrenérgicos , Agonistas de Receptores Adrenérgicos beta 2/química , Agonistas de Receptores Adrenérgicos beta 2/farmacologia , Agonistas Adrenérgicos beta/química , Agonistas Adrenérgicos beta/farmacologia , Aminas , Transporte Biológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Glucose , Receptores Adrenérgicos beta 2/metabolismo
7.
Expert Opin Pharmacother ; 24(18): 2133-2142, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37955136

RESUMO

INTRODUCTION: Strong scientific evidence and large experience support the use of ß2-agonists for the symptomatic alleviation of COPD. Therefore, there is considerable effort in discovering highly potent and selective ß2-agonists. AREAS COVERED: Recent research on novel ß2-agonists for the treatment of COPD. A detailed literature search was performed in two major databases (PubMed/MEDLINE and Scopus) up to September 2023." EXPERT OPINION: Compounds that preferentially activate a Gs- or ß-arrestin-mediated signaling pathway via ß- adrenoceptors (ARs) are more innovative. Pepducins, which target the intracellular region of ß2-AR to modulate receptor signaling output, have the most interesting profile from a pharmacological point of view. They stabilize the conformation of the ß2-AR and influence its signaling by interacting with the intracellular receptor-G protein interface. New bifunctional drugs called muscarinic antagonist-ß2 agonist (MABA), which have both muscarinic receptor (mAChR) antagonism and ß2-agonist activity in the same molecule, are a new opportunity. However, all tested compounds have been shown to act predominantly as mAChR antagonists or ß2-agonists. An intriguing idea is to utilize allosteric modulators that bind to ß2-ARs at sites different than those bound by orthosteric ligands to augment or reduce the signaling transduced by the orthosteric ligand.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Humanos , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Receptores Adrenérgicos beta 2/metabolismo , Receptores Adrenérgicos beta 2/uso terapêutico , Transdução de Sinais , Agonistas de Receptores Adrenérgicos beta 2/farmacologia , Agonistas de Receptores Adrenérgicos beta 2/uso terapêutico
8.
Circ Res ; 133(11): 944-958, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37869877

RESUMO

BACKGROUND: ß1AR (beta-1 adrenergic receptor) and ß2AR (beta-2 adrenergic receptor)-mediated cyclic adenosine monophosphate signaling has distinct effects on cardiac function and heart failure progression. However, the mechanism regulating spatial localization and functional compartmentation of cardiac ß-ARs remains elusive. Emerging evidence suggests that microtubule-dependent trafficking of mRNP (messenger ribonucleoprotein) and localized protein translation modulates protein compartmentation in cardiomyocytes. We hypothesized that ß-AR compartmentation in cardiomyocytes is accomplished by selective trafficking of its mRNAs and localized translation. METHODS: The localization pattern of ß-AR mRNA was investigated using single molecule fluorescence in situ hybridization and subcellular nanobiopsy in rat cardiomyocytes. The role of microtubule on ß-AR mRNA localization was studied using vinblastine, and its effect on receptor localization and function was evaluated with immunofluorescent and high-throughput Förster resonance energy transfer microscopy. An mRNA protein co-detection assay identified plausible ß-AR translation sites in cardiomyocytes. The mechanism by which ß-AR mRNA is redistributed post-heart failure was elucidated by single molecule fluorescence in situ hybridization, nanobiopsy, and high-throughput Förster resonance energy transfer microscopy on 16 weeks post-myocardial infarction and detubulated cardiomyocytes. RESULTS: ß1AR and ß2AR mRNAs show differential localization in cardiomyocytes, with ß1AR found in the perinuclear region and ß2AR showing diffuse distribution throughout the cell. Disruption of microtubules induces a shift of ß2AR transcripts toward the perinuclear region. The close proximity between ß2AR transcripts and translated proteins suggests that the translation process occurs in specialized, precisely defined cellular compartments. Redistribution of ß2AR transcripts is microtubule-dependent, as microtubule depolymerization markedly reduces the number of functional receptors on the membrane. In failing hearts, both ß1AR and ß2AR mRNAs are redistributed toward the cell periphery, similar to what is seen in cardiomyocytes undergoing drug-induced detubulation. This suggests that t-tubule remodeling contributes to ß-AR mRNA redistribution and impaired ß2AR function in failing hearts. CONCLUSIONS: Asymmetrical microtubule-dependent trafficking dictates differential ß1AR and ß2AR localization in healthy cardiomyocyte microtubules, underlying the distinctive compartmentation of the 2 ß-ARs on the plasma membrane. The localization pattern is altered post-myocardial infarction, resulting from transverse tubule remodeling, leading to distorted ß2AR-mediated cyclic adenosine monophosphate signaling.


Assuntos
Insuficiência Cardíaca , Infarto do Miocárdio , Ratos , Animais , Hibridização in Situ Fluorescente , Insuficiência Cardíaca/metabolismo , Receptores Adrenérgicos beta 2/genética , Receptores Adrenérgicos beta 2/metabolismo , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , AMP Cíclico/metabolismo , Receptores Adrenérgicos beta 1/metabolismo , Microtúbulos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Monofosfato de Adenosina/metabolismo , Monofosfato de Adenosina/farmacologia
9.
J Biol Chem ; 299(11): 105293, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37774973

RESUMO

ß-arrestins play a key role in G protein-coupled receptor (GPCR) internalization, trafficking, and signaling. Whether ß-arrestins act independently of G protein-mediated signaling has not been fully elucidated. Studies using genome-editing approaches revealed that whereas G proteins are essential for mitogen-activated protein kinase activation by GPCRs., ß-arrestins play a more prominent role in signal compartmentalization. However, in the absence of G proteins, GPCRs may not activate ß-arrestins, thereby limiting the ability to distinguish G protein from ß-arrestin-mediated signaling events. We used ß2-adrenergic receptor (ß2AR) and its ß2AR-C tail mutant expressed in human embryonic kidney 293 cells wildtype or CRISPR-Cas9 gene edited for Gαs, ß-arrestin1/2, or GPCR kinases 2/3/5/6 in combination with arrestin conformational sensors to elucidate the interplay between Gαs and ß-arrestins in controlling gene expression. We found that Gαs is not required for ß2AR and ß-arrestin conformational changes, ß-arrestin recruitment, and receptor internalization, but that Gαs dictates the GPCR kinase isoforms involved in ß-arrestin recruitment. By RNA-Seq analysis, we found that protein kinase A and mitogen-activated protein kinase gene signatures were activated by stimulation of ß2AR in wildtype and ß-arrestin1/2-KO cells but absent in Gαs-KO cells. These results were validated by re-expressing Gαs in the corresponding KO cells and silencing ß-arrestins in wildtype cells. These findings were extended to cellular systems expressing endogenous levels of ß2AR. Overall, our results support that Gs is essential for ß2AR-promoted protein kinase A and mitogen-activated protein kinase gene expression signatures, whereas ß-arrestins initiate signaling events modulating Gαs-driven nuclear transcriptional activity.


Assuntos
Proteínas de Ligação ao GTP , Regulação da Expressão Gênica , Receptores Adrenérgicos beta 2 , beta-Arrestinas , Humanos , beta-Arrestina 1/genética , beta-Arrestina 1/metabolismo , beta-Arrestina 2/genética , beta-Arrestina 2/metabolismo , beta-Arrestinas/genética , beta-Arrestinas/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Regulação da Expressão Gênica/genética , Proteínas de Ligação ao GTP/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação , Receptores Adrenérgicos beta 2/química , Receptores Adrenérgicos beta 2/genética , Receptores Adrenérgicos beta 2/metabolismo , Células HEK293 , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Estrutura Terciária de Proteína , Isoformas de Proteínas , Ativação Enzimática/genética
10.
Int Arch Allergy Immunol ; 184(12): 1173-1183, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37717570

RESUMO

INTRODUCTION: Allergic diseases are mediated by T helper cell type 2 (Th2) cells, which are differentiated by dendritic cells (DCs). Recently, it was reported that cAMP concentration in DCs is important for inducing allergic responses. However, the regulatory function of cAMP in DCs in Th2 immune responses is unclear. It was hypothesized that the regulation of G protein-coupled receptors (GPCRs) to increase cAMP levels in DCs would reduce Th2 immune responses. METHODS: Human DCs from patients with allergic rhinitis (AR) and from healthy controls were subjected to next-generation sequencing (NGS) to identify potential GPCR. To investigate the functions of GPCR agonists, the in vitro co-culture experiment that THP-1 cells were differentiated into DCs and cultured with human CD4+ T-cells and an AR animal in vivo model were used. RESULTS: Among the GPCRs, the beta-2 adrenergic receptor (ADRB2) of allergic DCs was significantly increased by NGS analysis. The expression of ADRB2 was also increased in Der p 1-treated DCs, which was reduced by treatment with the ADRB2 agonist salbutamol. Salbutamol treatment induced cAMP production in THP-1 derived DCs. In an in vitro co-culture experiment, salbutamol-treated DCs reduced the secretion of Th2 cytokine. In an in vivo AR animal experiment, salbutamol-administered mice showed reduced allergic behavior and Th2 cytokine expression in the nasal mucosa. CONCLUSIONS: The regulation of ADRB2 with salbutamol alleviated the allergic response in vitro DC-T cell co-culture and in vivo AR animal models, suggesting that ADRB2 is a therapeutic target for AR and that ADRB2 agonists may be a promising medication for AR.


Assuntos
Receptores Adrenérgicos beta 2 , Rinite Alérgica , Humanos , Animais , Camundongos , Receptores Adrenérgicos beta 2/genética , Receptores Adrenérgicos beta 2/metabolismo , Células Dendríticas , Células Th2 , Citocinas/metabolismo , Imunidade , Albuterol/metabolismo
11.
J Clin Invest ; 133(18)2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37432742

RESUMO

Asthma is a chronic inflammatory disease associated with episodic airway narrowing. Inhaled ß2-adrenergic receptor (ß2AR) agonists (ß2-agonists) promote - with limited efficacy - bronchodilation in asthma. All ß2-agonists are canonical orthosteric ligands that bind the same site as endogenous epinephrine. We recently isolated a ß2AR-selective positive allosteric modulator (PAM), compound-6 (Cmpd-6), which binds outside of the orthosteric site and modulates orthosteric ligand functions. With the emerging therapeutic potential of G-protein coupled receptor allosteric ligands, we investigated the impact of Cmpd-6 on ß2AR-mediated bronchoprotection. Consistent with our findings using human ß2ARs, Cmpd-6 allosterically potentiated ß2-agonist binding to guinea pig ß2ARs and downstream signaling of ß2ARs. In contrast, Cmpd-6 had no such effect on murine ß2ARs, which lack a crucial amino acid in the Cmpd-6 allosteric binding site. Importantly, Cmpd-6 enhanced ß2 agonist-mediated bronchoprotection against methacholine-induced bronchoconstriction in guinea pig lung slices, but - in line with the binding studies - not in mice. Moreover, Cmpd-6 robustly potentiated ß2 agonist-mediated bronchoprotection against allergen-induced airway constriction in lung slices obtained from a guinea pig model of allergic asthma. Cmpd-6 similarly enhanced ß2 agonist-mediated bronchoprotection against methacholine-induced bronchoconstriction in human lung slices. Our results highlight the potential of ß2AR-selective PAMs in the treatment of airway narrowing in asthma and other obstructive respiratory diseases.


Assuntos
Asma , Humanos , Camundongos , Animais , Cobaias , Cloreto de Metacolina/farmacologia , Cloreto de Metacolina/uso terapêutico , Ligantes , Asma/tratamento farmacológico , Asma/genética , Asma/complicações , Pulmão/metabolismo , Sítios de Ligação , Receptores Adrenérgicos beta 2/genética , Receptores Adrenérgicos beta 2/metabolismo
12.
Proc Natl Acad Sci U S A ; 120(31): e2302668120, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37490535

RESUMO

Catecholamine-stimulated ß2-adrenergic receptor (ß2AR) signaling via the canonical Gs-adenylyl cyclase-cAMP-PKA pathway regulates numerous physiological functions, including the therapeutic effects of exogenous ß-agonists in the treatment of airway disease. ß2AR signaling is tightly regulated by GRKs and ß-arrestins, which together promote ß2AR desensitization and internalization as well as downstream signaling, often antithetical to the canonical pathway. Thus, the ability to bias ß2AR signaling toward the Gs pathway while avoiding ß-arrestin-mediated effects may provide a strategy to improve the functional consequences of ß2AR activation. Since attempts to develop Gs-biased agonists and allosteric modulators for the ß2AR have been largely unsuccessful, here we screened small molecule libraries for allosteric modulators that selectively inhibit ß-arrestin recruitment to the receptor. This screen identified several compounds that met this profile, and, of these, a difluorophenyl quinazoline (DFPQ) derivative was found to be a selective negative allosteric modulator of ß-arrestin recruitment to the ß2AR while having no effect on ß2AR coupling to Gs. DFPQ effectively inhibits agonist-promoted phosphorylation and internalization of the ß2AR and protects against the functional desensitization of ß-agonist mediated regulation in cell and tissue models. The effects of DFPQ were also specific to the ß2AR with minimal effects on the ß1AR. Modeling, mutagenesis, and medicinal chemistry studies support DFPQ derivatives binding to an intracellular membrane-facing region of the ß2AR, including residues within transmembrane domains 3 and 4 and intracellular loop 2. DFPQ thus represents a class of biased allosteric modulators that targets an allosteric site of the ß2AR.


Assuntos
Arrestina , Transdução de Sinais , beta-Arrestinas/metabolismo , Arrestina/metabolismo , beta-Arrestina 1/genética , beta-Arrestina 1/metabolismo , Receptores Adrenérgicos/metabolismo , Receptores Adrenérgicos beta 2/genética , Receptores Adrenérgicos beta 2/metabolismo
13.
Brain Behav Immun ; 113: 66-82, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37369341

RESUMO

Stress-induced ß2-adrenergic receptor (ß2AR) activation in B cells increases IgG secretion; however, the impact of this activation on antibody affinity and the underlying mechanisms remains unclear. In the current study, we demonstrate that stress in mice following ovalbumin (OVA) or SARS-CoV-2 RBD immunization significantly increases both serum and surface-expressed IgG binding to the immunogen, while concurrently reducing surface IgG expression and B cell clonal expansion. These effects were abolished by pharmacological ß2AR blocking or when the experiments were conducted in ß2AR -/- mice. In the second part of our study, we used single B cell sorting to characterize the monoclonal antibodies (mAbs) generated following ß2AR activation in cultured RBD-stimulated B cells from convalescent SARS-CoV-2 donors. Ex vivo ß2AR activation increased the affinities of the produced anti-RBD mAbs by 100-fold compared to mAbs produced by the same donor control cultures. Consistent with the mouse experiments, ß2AR activation reduced both surface IgG levels and the frequency of expanded clones. mRNA sequencing revealed a ß2AR-dependent upregulation of the PI3K pathway and B cell receptor (BCR) signaling through AKT phosphorylation, as well as an increased B cell motility. Overall, our study demonstrates that stress-mediated ß2AR activation drives changes in B cells associated with BCR activation and higher affinity antibodies.


Assuntos
Adrenérgicos , COVID-19 , Camundongos , Animais , Fosfatidilinositol 3-Quinases , SARS-CoV-2/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Imunoglobulina G
14.
Circ Res ; 133(2): 120-137, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37313722

RESUMO

BACKGROUND: Beta-2 adrenergic receptors (ß2ARs) but not beta-2 adrenergic receptors (ß1ARs) form a functional complex with L-type Ca2+ channels (LTCCs) on the cardiomyocyte membrane. However, how microdomain localization in the plasma membrane affects the function of these complexes is unknown. We aim to study the coupling between LTCC and ß adrenergic receptors in different cardiomyocyte microdomains, the distinct involvement of PKA and CAMKII (Ca2+/calmodulin-dependent protein kinase II) and explore how this functional complex is disrupted in heart failure. METHODS: Global signaling between LTCCs and ß adrenergic receptors was assessed with whole-cell current recordings and western blot analysis. Super-resolution scanning patch-clamp was used to explore the local coupling between single LTCCs and ß1AR or ß2AR in different membrane microdomains in control and failing cardiomyocytes. RESULTS: LTCC open probability (Po) showed an increase from 0.054±0.003 to 0.092±0.008 when ß2AR was locally stimulated in the proximity of the channel (<350 nm) in the transverse tubule microdomain. In failing cardiomyocytes, from both rodents and humans, this transverse tubule coupling between LTCC and ß2AR was lost. Interestingly, local stimulation of ß1AR did not elicit any change in the Po of LTCCs, indicating a lack of proximal functional interaction between the two, but we confirmed a general activation of LTCC via ß1AR. By using blockers of PKA and CaMKII and a Caveolin-3-knockout mouse model, we conclude that the ß2AR-LTCC regulation requires the presence of caveolin-3 and the activation of the CaMKII pathway. By contrast, at a cellular "global" level PKA plays a major role downstream ß1AR and results in an increase in LTCC current. CONCLUSIONS: Regulation of the LTCC activity by proximity coupling mechanisms occurs only via ß2AR, but not ß1AR. This may explain how ß2ARs tune the response of LTCCs to adrenergic stimulation in healthy conditions. This coupling is lost in heart failure; restoring it could improve the adrenergic response of failing cardiomyocytes.


Assuntos
Caveolina 3 , Insuficiência Cardíaca , Camundongos , Animais , Humanos , Caveolina 3/genética , Caveolina 3/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Insuficiência Cardíaca/metabolismo , Miócitos Cardíacos/metabolismo , Receptores Adrenérgicos beta/metabolismo , Receptores Adrenérgicos beta 2/genética , Receptores Adrenérgicos beta 2/metabolismo , Adrenérgicos , Canais de Cálcio Tipo L/metabolismo
15.
Phytomedicine ; 115: 154830, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37149964

RESUMO

BACKGROUD: Xinbao Pill (XBP) is extensively used in the adjuvant treatment of chronic heart failure in China. However, the pharmacological effect and underlying mechanism on CHF remains unclear. PURPOSE: Our research was performed to investigate the cardioprotective effect of XBP against CHF and uncover the potential mechanism. METHODS: Male Sprague-Dawley (SD) rats were subjected to the left anterior descending (LAD) artery ligation for 8 weeks and were treated with different doses of XBP (from the 4th week to the end). Cardiac function and morphology assessment were performed by using M-mode echocardiography, H&E and Masson staining. Western blotting analysis, co-immunoprecipitation (IP) assays, siRNA transfection were used to evaluate the mechanism of XBP. RESULTS: XBP improved cardiac function and alleviated cardiac fibrosis in LAD-induced chronic heart failure rats. Meanwhile, XBP protected cardiomyocytes against oxygen-glucose deprivation (OGD) injury in AC16 cells and H9c2 cells. Additionally, XBP could increase the expression of ß1-AR and ß2-AR and inhibit their ubiquitanation. Further mechanism study showed that XBP upregulated USP18 expression, while silence of USP18 attenuated the cardioprotective effect of XBP and the increase of ß1-AR by XBP. Moreover, XBP increased MDM2 and ß-arrestin2, and disrupted the interaction between Nedd4 and ß2-AR. After using the inhibitor of MDM2, SP141, the cardioprotective effect of XBP and the inhibitory effect on the ubiquitanation of ß2-AR were also blocked. CONCLUSION: Our study firstly revealed that XBP improved cardiac function against CHF through suppressing USP18 and MDM2/ß-arrestin2/Nedd4-mediated the ubiquitination of ß1-AR and ß2-AR.


Assuntos
Insuficiência Cardíaca , Receptores Adrenérgicos beta , Ratos , Masculino , Animais , Receptores Adrenérgicos beta/metabolismo , Receptores Adrenérgicos beta/uso terapêutico , Ratos Sprague-Dawley , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/metabolismo , Miócitos Cardíacos , Ubiquitinação , Receptores Adrenérgicos beta 2/metabolismo
16.
Int J Biol Sci ; 19(7): 2006-2019, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37151872

RESUMO

Colorectal cancer (CRC) is a common malignancy worldwide, and chronic stress has been considered as a significant risk factor for CRC. However, the role of chronic stress in CRC progression is unclear. The present study showed that pre-exposure to chronic stress facilitated CRC tumor growth in mice, and epinephrine promoted CRC cell proliferation in vitro. Metabolomics analysis revealed that chronic stress reshaped metabolic pathways to enhance glycolysis. Additional studies have shown that stress enhanced the expression levels of glycolytic-associated enzymes, including GLUT1, HK2 and PFKP. Mechanistically, chronic stress activated the ß2-AR/PKA/CREB1 pathway, as a result, phosphorylated CREB1 transcriptional induced glycolytic enzymes expression. Furthermore, stress-induced cell proliferation and tumor growth could be reversed by administration of glycolysis inhibitor 2-deoxyglucose (2-DG) and ß2-AR antagonist ICI118,551, respectively. Altogether, these findings define novel insights into the stress-induced epinephrine-mediated CRC progression from the point of view of tumor energy metabolism reprogramming and provide a perspective on targeting glycolysis as a potential approach in stress-associated CRC treatment.


Assuntos
Neoplasias Colorretais , Estresse Psicológico , Animais , Camundongos , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias Colorretais/metabolismo , Epinefrina , Glicólise , Transdução de Sinais/genética , Receptores Adrenérgicos beta 2/metabolismo
17.
Nat Commun ; 14(1): 2005, 2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-37037825

RESUMO

Advances in structural biology have provided important mechanistic insights into signaling by the transmembrane core of G-protein coupled receptors (GPCRs); however, much less is known about intrinsically disordered regions such as the carboxyl terminus (CT), which is highly flexible and not visible in GPCR structures. The ß2 adrenergic receptor's (ß2AR) 71 amino acid CT is a substrate for GPCR kinases and binds ß-arrestins to regulate signaling. Here we show that the ß2AR CT directly inhibits basal and agonist-stimulated signaling in cell lines lacking ß-arrestins. Combining single-molecule fluorescence resonance energy transfer (FRET), NMR spectroscopy, and molecular dynamics simulations, we reveal that the negatively charged ß2AR-CT serves as an autoinhibitory factor via interacting with the positively charged cytoplasmic surface of the receptor to limit access to G-proteins. The stability of this interaction is influenced by agonists and allosteric modulators, emphasizing that the CT plays important role in allosterically regulating GPCR activation.


Assuntos
Receptores Acoplados a Proteínas G , Transdução de Sinais , beta-Arrestinas/metabolismo , Linhagem Celular , Receptores Acoplados a Proteínas G/metabolismo , Receptores Adrenérgicos/metabolismo , Receptores Adrenérgicos beta 2/metabolismo
18.
Life Sci ; 322: 121644, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37004731

RESUMO

Altered sensitivity to the chronotropic and inotropic effects of catecholamines and reduction in ß1/ß2-adrenoceptor (ß1/ß2-AR) ratio were reported in failing and in senescent human heart, as well as in isolated atria and ventricle of rats submitted to stress. This was due to downregulation of ß1-AR with or without up-regulation of ß2-AR. AIMS: To investigate the stress-induced behavior of ß1-AR in the heart of mice expressing a non-functional ß2-AR subtype. The guiding hypothesis is that the absence of ß2-AR signaling will not affect the behavior of ß1-AR during stress and that those are independent processes. MATERIALS AND METHODS: The chronotropic and inotropic responses to ß-AR agonists in isolated atria of stressed mice expressing a non-functional ß2-AR were analyzed. The mRNA and protein expressions of ß1- and ß2-AR were also determined. KEY FINDINGS: No deaths were observed in mice under stress protocol. Atria of stressed mice displayed reduced sensitivity to isoprenaline compared to the controls, an effect that was abolished by the ß2- and ß1-AR antagonists 50 nM ICI118,551 and 300 nM CGP20712A, respectively. Sensitivity and maximum response to the ß-agonists dobutamine and salbutamol were not altered by stress or ICI118,551. The responses to dobutamine and salbutamol were prevented by CGP20712A. The expression of ß1-AR was reduced at protein levels. SIGNIFICANCE: Collectively, our data provide evidence that the cardiac ß2-AR is not essential for survival in a stressful situation and that the stress-induced reduction of ß1-AR expression was independent of the ß2-AR presence.


Assuntos
Agonistas Adrenérgicos beta , Dobutamina , Humanos , Camundongos , Ratos , Animais , Dobutamina/farmacologia , Dobutamina/metabolismo , Agonistas Adrenérgicos beta/farmacologia , Átrios do Coração/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Isoproterenol/farmacologia , Isoproterenol/metabolismo , Albuterol/farmacologia , Receptores Adrenérgicos beta 1/genética , Receptores Adrenérgicos beta 1/metabolismo , Antagonistas Adrenérgicos beta/farmacologia , Antagonistas Adrenérgicos beta/metabolismo
19.
Nat Commun ; 14(1): 2138, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-37059717

RESUMO

G protein-coupled receptors (GPCRs) within the same subfamily often share high homology in their orthosteric pocket and therefore pose challenges to drug development. The amino acids that form the orthosteric binding pocket for epinephrine and norepinephrine in the ß1 and ß2 adrenergic receptors (ß1AR and ß2AR) are identical. Here, to examine the effect of conformational restriction on ligand binding kinetics, we synthesized a constrained form of epinephrine. Surprisingly, the constrained epinephrine exhibits over 100-fold selectivity for the ß2AR over the ß1AR. We provide evidence that the selectivity may be due to reduced ligand flexibility that enhances the association rate for the ß2AR, as well as a less stable binding pocket for constrained epinephrine in the ß1AR. The differences in the amino acid sequence of the extracellular vestibule of the ß1AR allosterically alter the shape and stability of the binding pocket, resulting in a marked difference in affinity compared to the ß2AR. These studies suggest that for receptors containing identical binding pocket residues, the binding selectivity may be influenced in an allosteric manner by surrounding residues, like those of the extracellular loops (ECLs) that form the vestibule. Exploiting these allosteric influences may facilitate the development of more subtype-selective ligands for GPCRs.


Assuntos
Catecolaminas , Receptores Adrenérgicos beta 2 , Ligantes , Receptores Adrenérgicos beta 2/metabolismo , Epinefrina/farmacologia , Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...